- You have to sign all sheets with your name and your student number.
- You may use only the paper provided by the organiser.
- Use of any electronic devices is strictly prohibited.
- Each problem is worth 10 points.
- You should solve *exactly* 4 out of the 5 problems given below. In case you submit 5 solutions, only 4 will be evaluated (at random).
- You can use any fact that was proven in the lecture or in class.

Problem 1. Let $A \subseteq \mathbb{R}^2$ be \mathscr{L}^2 -measurable with $\mathscr{L}^2(A) > 0$. Show that A contains vertices of some regular hexagon.

Hint. Balls are rotationally invariant.

Problem 2. We say that $f : \mathbf{R} \to \mathbf{R}$ is good if:

for each $\varepsilon > 0$ there exists $\delta > 0$ such that for any $n \in \mathscr{P}$ if $-\infty < x_1 \leq y_1 \leq \cdots \leq x_n \leq y_n < \infty$ satisfy $\sum_{i=1}^n |x_i - y_i| \leq \delta$, then $\sum_{i=1}^n |f(x_i) - f(y_i)| \leq \varepsilon$.

Assume f is good and non-decreasing. Let ψ be the associated Riemann-Stieltjes measure. Show that $\psi \ll \mathscr{L}^1$.

Problem 3. Assume $0 < C < \infty$, $k, n \in \mathcal{P}$, k < n,

 $\begin{array}{l} \phi, \phi_1, \phi_2, \dots \quad \text{are non-zero Radon measures over } \mathbf{R}^n \,, \\ & \text{spt} \, \phi_i \text{ is path connected for } i \in \mathscr{P} \,, \quad \text{spt} \, \phi \text{ is compact} \,, \\ & \phi_i \to \phi \quad \text{as } i \to \infty \, (\text{weakly}) \,, \\ & \text{and} \quad \phi_i(\mathbf{B}(x,r)) \geqslant Cr^k \quad \text{whenever } 0 < r < 1, \, i \in \mathscr{P} \,, \, \text{and} \, x \in \text{spt} \, \phi_i \,. \end{array}$

Show that for any $\delta > 0$ there exists $i_0 \in \mathscr{P}$ such for all $\mathscr{P} \ni i > i_0$

$$\operatorname{spt} \phi_i \subseteq \left(\operatorname{spt} \phi + \mathbf{B}(0, \delta)\right) = \mathbf{R}^n \cap \left\{x : \operatorname{dist}(x, \operatorname{spt} \phi) \leqslant \delta\right\}.$$

Recall. If ψ is a Radon measure over \mathbf{R}^n , then spt $\psi = \mathbf{R}^n \sim \bigcup \{V : \psi(V) = 0, V \text{ is open in } \mathbf{R}^n \}$.

Problem 4. Let $A \subseteq \mathbf{R}^n$ be arbitrary and ϕ be a Radon measure over \mathbf{R}^n . Show that $\mathbf{D}(\phi \sqcup A, \phi, x) = 1$ for ϕ almost all $x \in A$.

Remark. This was not proven in the class.

Problem 5. Let $0 < d < \infty$, $0 < \gamma < 1$, $1 \leq C < \infty$, (X, ρ) , (Y, σ) be metric spaces, and for $0 \leq s < \infty$ let \mathscr{H}_X^s and \mathscr{H}_Y^s be the s-dimensional Hausdorff measures over X and Y respectively. Assume $f: X \to Y$ satisfies $\sigma(f(x), f(y)) \leq C\rho(x, y)^{\gamma}$ whenever $x, y \in X$. Show that

$$\mathscr{H}^{d}_{Y}(f[A]) \leq \frac{C^{d} \boldsymbol{\alpha}(d)}{\boldsymbol{\alpha}(d\gamma)2^{d(1-\gamma)}} \mathscr{H}^{d\gamma}_{X}(A) \quad \text{whenever } A \subseteq X \,.$$

Conclude that $\dim_{\mathscr{H}} f[A] \leq \gamma^{-1} \dim_{\mathscr{H}} A$.

Solution of problem 1.

Recall that $\mathbf{D}(\mathscr{L}^2 \sqcup A, \mathscr{L}^2, x) = 1$ for \mathscr{L}^2 almost all $x \in A$. Let $x \in A$ be such a point and assume x = 0. Let $\rho_i : \mathbf{R}^2 \to \mathbf{R}^2$ be the clockwise rotation by angle $2\pi i/6$ for $i \in \{1, 2, \ldots, 6\}$. Observe that $\mathscr{L}^2(A \cap \mathbf{B}(0, r)) = \mathscr{L}^2(\rho_i[A] \cap \mathbf{B}(0, r))$ for r > 0 and $i \in \{1, 2, \ldots, 6\}$; hence, $\mathbf{D}(\mathscr{L}^2 \sqcup \rho_i[A], \mathscr{L}^2, x) = 1$. Choose r > 0 such that

$$\mathscr{L}^{2}(\rho_{i}[A] \cap \mathbf{B}(0,r)) > 5/6\mathscr{L}^{2}(\mathbf{B}(0,r)) \text{ for } i \in \{1, 2, \dots, 6\},\$$

then

$$\mathscr{L}^2\left(\bigcap_{i=1}^6 \rho_i[A] \cap \mathbf{B}(0,r)\right) > 0$$

so there exists $z \in \bigcap_{i=1}^{6} \rho_i[A]$ which means that $\rho_i^{-1}(z) \in A$ for $i \in \{1, 2, \dots, 6\}$. The six points $\{\rho_i^{-1}(z) : i \in \{1, 2, \dots, 6\}\}$ are vertices of a regular hexagon.

Solution of problem 2.

Recall the definition of ψ . For $0 < \delta \leq \infty$ and $A \subseteq \mathbf{R}$ we have

$$\psi_{\delta}(A) = \inf \left\{ \sum_{I \in F} \operatorname{diam} f[I] : \begin{array}{c} F \text{ is countable family of open intervals,} \\ A \subseteq \bigcup F, \quad \operatorname{diam} I \leqslant \delta \text{ for } I \in F \end{array} \right\}$$

and $\psi(A) = \sup_{\delta > 0} \psi_{\delta}(A) = \lim_{\delta \downarrow 0} \psi_{\delta}(A)$.

Note that being *good* is stronger than being *continuous* so f is continuous; in particular, it does not have any jumps so diam f[I] = diam f[Clos I]. Therefore, the measure ψ will not change if we allow F inside the infimum to contain also closed and half-closed intervals.

Let $Z \subseteq \mathbf{R}$ be such that $\mathscr{L}^1(Z) = 0$. Let $\varepsilon > 0$ and choose $\delta > 0$ for f as in the definition of good functions. Since $\mathscr{L}^1(Z) = 0$ for any $0 < \iota < \delta$ there exists a countable family F of open intervals such that

$$Z \subseteq \bigcup F$$
 and $\sum_{J \in F} \operatorname{diam} J \leq \iota < \delta$.

Let us order $F = \{J_1, J_2, \ldots\}$ and set $A_j = J_j \sim \bigcup_{i=1}^{j-1} J_i$ for $j \in \mathscr{P}$. Clearly $\{A_j : j \in \mathscr{P}\}$ is disjointed and each A_j is a sum of a finite number of pairwise disjoint intervals (open, closed, or half-closed). Let G be the family of all intervals of all A_j for $j \in \mathscr{P}$, then G is a countable disjointed family of intervals such that

$$Z \subseteq \bigcup G$$
 and $\sum_{J \in G} \operatorname{diam} J \leq \sum_{J \in F} \operatorname{diam} J \leq \iota < \delta$

For $J \in G$ set $a_J = \inf J$ and $b_J = \sup J$. Assume $\inf Z > M > -\infty$ so that we can require that $a_J \ge M$ for $J \in F$. Let us order the set of pairs $\{(a_J, b_J) : J \in G\} = \{(x_i, y_i) : i \in \mathscr{P}\}$ so that $x_i \le x_{i+1}$ for $i \in \mathscr{P}$. Since G is disjointed we also have $y_i \le x_{i+1}$ for $i \in \mathscr{P}$. For each $n \in \mathscr{P}$ we have, due to our choice of δ ,

$$\sum_{i=1}^{n} |x_i - y_i| \leq \sum_{J \in G} \operatorname{diam} J \leq \iota < \delta \quad \text{and} \quad \sum_{i=1}^{n} |f(x_i) - f(y_i)| \leq \varepsilon.$$

Passing to the limit $n \to \infty$ we obtain

$$\sum_{J \in G} \operatorname{diam} f[J] = \sum_{i=1}^{\infty} |f(x_i) - f(y_i)| \leq \varepsilon.$$

Clearly diam $J \leq \iota$ for $J \in G$ and we get

 $\psi_{\iota}(Z) \leq \varepsilon$.

Letting first $\iota \downarrow 0$ and then $\varepsilon \downarrow 0$ we get $\psi(Z) = 0$. In case $\inf Z = -\infty$ we consider an increasing sequence $Z_k = Z \cap \{t : t > -k\}$ for $k \in \mathscr{P}$ and argue that each Z_k is a ψ null set so it is ψ -measurable and we can write

$$\psi(Z) = \psi(\bigcup\{Z_k : k \in \mathscr{P}\}) = \lim_{k \to \infty} \psi(Z_k) = 0.$$

Solution of problem 3.

First we shall prove that for each $\delta > 0$ there exists $i_0 \in \mathscr{P}$ such that for $i \in \mathscr{P}$ with $i \ge i_0$ there exists $y_i \in \operatorname{spt} \phi_i$ such that $\operatorname{dist}(y_i, \operatorname{spt} \phi) \le \delta$. Assume the contrary, i.e., that $\rho_i = \inf\{|x - y| : x \in \operatorname{spt} \phi, y \in \operatorname{spt} \phi_i\} > \delta$ for all $i \in \mathscr{P}$ larger than some $i_0 = i_0(\delta) \in \mathscr{P}$ depending on δ . Let $f \in \mathscr{K}(\mathbb{R}^n)$ be such that f(z) = 1 whenever $\operatorname{dist}(z, \operatorname{spt} \phi) \le \delta/2$ and f(z) = 0 if $\operatorname{dist}(z, \operatorname{spt} \phi) \ge \delta$. Such f exists since $\operatorname{spt} \phi$ is compact and non-empty. Clearly

$$\lim_{i \to \infty} \int f \, \mathrm{d}\phi_i = \lim_{i \to \infty} \int_{\operatorname{spt} \phi_i} 0 \, \mathrm{d}\phi_i = 0 \quad \text{but} \quad \int f \, \mathrm{d}\phi = \phi(\operatorname{spt} \phi) > 0 \quad \text{a contradiction} \, .$$

Now, we turn to the proof of the main claim. Assume the contrary, i.e., that there exists $\delta > 0$ such that for all $i \in \mathscr{P}$ there exists $x_i \in \operatorname{spt} \phi_i$ with $\operatorname{dist}(x_i, \operatorname{spt} \phi) > \delta$. If $i \ge i_0(\delta)$, then the first part of our proof above yields a point $y_i \in \operatorname{spt} \phi_i$ with $\operatorname{dist}(y_i, \operatorname{spt} \phi) \le \delta$ and, since $\operatorname{spt} \phi_i$ is path connected, we may and shall assume that $\operatorname{dist}(x_i, \operatorname{spt} \phi) \le 2\delta$. Since $\operatorname{spt} \phi$ is compact we see that $\operatorname{spt} \phi + \mathbf{B}(0, 2\delta)$ is also compact and we may assume (possibly choosing a sub-sequence) that $\lim_{i\to\infty} x_i = x$ exists. Clearly $\delta \le \operatorname{dist}(x, \operatorname{spt} \phi) \le 2\delta$. Let $f \in \mathscr{K}(\mathbf{R}^n)$ be such that $f \ge 0$, f(z) = 1 whenever $\delta/2 \le \operatorname{dist}(z, \operatorname{spt} \phi) \le 3\delta$ and f(z) = 0 for $z \in \operatorname{spt} \phi$. We have

$$\int f \,\mathrm{d}\phi_i \ge \int_{\mathbf{B}(x,\delta/2)} f \,\mathrm{d}\phi_i \ge \int_{\mathbf{B}(x_i,\delta/2-|x-x_i|)} f \,\mathrm{d}\phi_i \ge \phi_i(\mathbf{B}(x_i,\delta/4)) \ge C4^{-k}\delta^k > 0$$

whenever $i \in \mathscr{P}$ is so big that $|x - x_i| \leq \delta/4$. Since $\int f d\phi = 0$, this contradicts $\phi_i \to \phi$ as $i \to \infty$.

Solution of problem 4.

Observe that since A may be ϕ non-measurable the measure $\phi \sqcup A$ might not be Borel regular; hence, $\phi \sqcup A$ might not be Radon and we cannot directly use any results concerning existence of densities for Radon measures.

Let $K \subseteq \mathbf{R}^n$ be compact and $C = A \cap K$. We shall show that $\mathbf{D}(\phi \sqcup C, \phi, x) = 1$ for ϕ almost all $x \in C$. Since \mathbf{R}^n is a sum of countably many compact sets, this will suffices to prove the main claim.

If $\phi(C) = 0$, then there is nothing to prove so assume $\phi(C) > 0$. Let $B \subseteq \mathbb{R}^n$ be Borel and such that $C \subseteq B$ and $\phi(B) = \phi(C)$. Then B is a ϕ -hull of C, i.e., $\phi(T \cap C) = \phi(T \cap B)$ for any ϕ -measurable set T. Since balls are ϕ measurable we get

$$\mathbf{D}(\phi \llcorner C, \phi, x) = \lim_{r \downarrow 0} \frac{\phi(C \cap \mathbf{B}(x, r))}{\phi(\mathbf{B}(x, r))} = \lim_{r \downarrow 0} \frac{\phi(B \cap \mathbf{B}(x, r))}{\phi(\mathbf{B}(x, r))} = \lim_{r \downarrow 0} f_{\mathbf{B}(x, r)} \mathbb{1}_B \,\mathrm{d}\phi = \mathbb{1}_B(x)$$

for ϕ almost all x. In particular, $\mathbf{D}(\phi \sqcup C, \phi, x) = 1$ for ϕ almost all $x \in B$ but $C \subseteq B$ so $\mathbf{D}(\phi \sqcup A, \phi, x) = 1$ for ϕ almost all $x \in C$.

Solution of problem 5.

Note that diam $f[S] \leq C(\operatorname{diam} S)^{\gamma}$ whenever $S \subseteq X$. Let $A \subseteq X$. Employing the fact that $\inf C \leq \inf D$ whenever $D \subseteq C \subseteq \mathbf{R}$, for $0 < \delta \leq \infty$, setting $\kappa = (\frac{\delta}{C})^{1/\gamma}$, we get

$$\begin{aligned} \frac{2^d}{\boldsymbol{\alpha}(d)} \mathscr{H}^d_{\delta}(f[A]) \\ &= \inf \left\{ \sum_{P \in F} (\operatorname{diam} P)^d : F \subseteq \mathbf{2}^Y, \, F \text{ countable}, \, f[A] \subseteq \bigcup F, \, \operatorname{diam} P \leqslant \delta \text{ for } P \in F \right\} \\ &\leqslant \inf \left\{ \sum_{S \in G} (\operatorname{diam} f[S])^d : G \subseteq \mathbf{2}^X, \, G \text{ countable}, A \subseteq \bigcup G, \, \operatorname{diam} S \leqslant \kappa \text{ for } S \in G \right\} \\ &\leqslant \inf \left\{ \sum_{S \in G} C^d (\operatorname{diam} S)^{d\gamma} : G \subseteq \mathbf{2}^X, \, G \text{ countable}, A \subseteq \bigcup G, \, \operatorname{diam} S \leqslant \kappa \text{ for } S \in G \right\} \\ &= \frac{C^d 2^{d\gamma}}{\boldsymbol{\alpha}(d\gamma)} \mathscr{H}^{d\gamma}_{\kappa}(A) \leqslant \sup_{\iota > 0} \frac{C^d 2^{d\gamma}}{\boldsymbol{\alpha}(d\gamma)} \mathscr{H}^{d\gamma}_{\iota}(A) = \frac{C^d 2^{d\gamma}}{\boldsymbol{\alpha}(d\gamma)} \mathscr{H}^{d\gamma}(A) \,. \end{aligned}$$

Passing to the limit $\delta \downarrow 0$, we get the claim.

If $\mathscr{H}^{s}(A) = 0$ for some $0 \leq s < \infty$, then $\mathscr{H}^{s/\gamma}(f[A]) = 0$; hence, if $\dim_{\mathscr{H}}(A) < s$, then $\dim_{\mathscr{H}} f[A] \leq s/\gamma$ so $\dim_{\mathscr{H}} f[A] \leq \dim_{\mathscr{H}}(A)/\gamma$.