
Measure Theory 31 January 2024 Final exam

• You have to sign all sheets with your name and your student number.

• You may use only the paper provided by the organiser.

• Use of any electronic devices is strictly prohibited.

• Each problem is worth 10 points.

• You should solve exactly 4 out of the 5 problems given below.
In case you submit 5 solutions, only 4 will be evaluated (at random).

• You can use any fact that was proven in the lecture or in class.

Problem 1. Let A ⊆ R2 be L 2-measurable with L 2(A) > 0. Show that A contains vertices
of some regular hexagon.
Hint. Balls are rotationally invariant.

Problem 2. We say that f : R→ R is good if:

for each ε > 0 there exists δ > 0 such that for any n ∈P if −∞ < x1 ¬ y1 ¬ · · · ¬
xn ¬ yn <∞ satisfy

∑n
i=1 |xi − yi| ¬ δ, then

∑n
i=1 |f(xi)− f(yi)| ¬ ε.

Assume f is good and non-decreasing. Let ψ be the associated Riemann-Stieltjes measure. Show
that ψ ≪ L 1.

Problem 3. Assume 0 < C <∞, k, n ∈P, k < n,

φ, φ1, φ2, . . . are non-zero Radon measures over Rn ,
sptφi is path connected for i ∈P , sptφ is compact ,

φi → φ as i→∞ (weakly) ,
and φi(B(x, r)) ­ Crk whenever 0 < r < 1, i ∈P, and x ∈ sptφi .

Show that for any δ > 0 there exists i0 ∈P such for all P ∋ i > i0

sptφi ⊆
(
sptφ+B(0, δ)

)
= Rn ∩

{
x : dist(x, sptφ) ¬ δ

}
.

Recall. If ψ is a Radon measure over Rn, then sptψ = Rn∼
⋃
{V : ψ(V ) = 0, V is open in Rn}.

Problem 4. Let A ⊆ Rn be arbitrary and φ be a Radon measure over Rn. Show that
D(φ A, φ, x) = 1 for φ almost all x ∈ A.

Remark. This was not proven in the class.

Problem 5. Let 0 < d < ∞, 0 < γ < 1, 1 ¬ C < ∞, (X, ρ), (Y, σ) be metric spaces, and for
0 ¬ s <∞ let H s

X and H s
Y be the s-dimensional Hausdorff measures overX and Y respectively.

Assume f : X → Y satisfies σ(f(x), f(y)) ¬ Cρ(x, y)γ whenever x, y ∈ X. Show that

H d
Y (f [A]) ¬

Cdα(d)
α(dγ)2d(1−γ)

H dγ
X (A) whenever A ⊆ X .

Conclude that dimH f [A] ¬ γ−1 dimH A.
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Solution of problem 1.
Recall that D(L 2 A,L 2, x) = 1 for L 2 almost all x ∈ A. Let x ∈ A be such a point and
assume x = 0. Let ρi : R2 → R2 be the clockwise rotation by angle 2πi/6 for i ∈ {1, 2, . . . , 6}.
Observe that L 2(A ∩ B(0, r)) = L 2(ρi[A] ∩ B(0, r)) for r > 0 and i ∈ {1, 2, . . . , 6}; hence,
D(L 2 ρi[A],L 2, x) = 1. Choose r > 0 such that

L 2(ρi[A] ∩B(0, r)) > 5/6L 2(B(0, r)) for i ∈ {1, 2, . . . , 6} ,

then
L 2
(⋂6
i=1ρi[A] ∩B(0, r)

)
> 0

so there exists z ∈ ⋂6i=1ρi[A] which means that ρ−1i (z) ∈ A for i ∈ {1, 2, . . . , 6}. The six points
{ρ−1i (z) : i ∈ {1, 2, . . . , 6}} are vertices of a regular hexagon.

Solution of problem 2.
Recall the definition of ψ. For 0 < δ ¬ ∞ and A ⊆ R we have

ψδ(A) = inf
{∑
I∈F
diam f [I] :

F is countable family of open intervals,
A ⊆ ⋃F, diam I ¬ δ for I ∈ F

}
and ψ(A) = sup

δ>0
ψδ(A) = lim

δ↓0
ψδ(A) .

Note that being good is stronger than being continuous so f is continuous; in particular, it does
not have any jumps so diam f [I] = diam f [Clos I]. Therefore, the measure ψ will not change if
we allow F inside the infimum to contain also closed and half-closed intervals.
Let Z ⊆ R be such that L 1(Z) = 0. Let ε > 0 and choose δ > 0 for f as in the definition of
good functions. Since L 1(Z) = 0 for any 0 < ι < δ there exists a countable family F of open
intervals such that

Z ⊆ ⋃F and
∑
J∈F diam J ¬ ι < δ .

Let us order F = {J1, J2, . . .} and set Aj = Jj ∼
⋃j−1
i=1 Ji for j ∈ P. Clearly {Aj : j ∈ P} is

disjointed and each Aj is a sum of a finite number of pairwise disjoint intervals (open, closed,
or half-closed). Let G be the family of all intervals of all Aj for j ∈ P, then G is a countable
disjointed family of intervals such that

Z ⊆ ⋃G and
∑
J∈G diam J ¬

∑
J∈F diam J ¬ ι < δ

For J ∈ G set aJ = inf J and bJ = sup J . Assume inf Z > M > −∞ so that we can require
that aJ ­ M for J ∈ F . Let us order the set of pairs {(aJ , bJ) : J ∈ G} = {(xi, yi) : i ∈ P}
so that xi ¬ xi+1 for i ∈ P. Since G is disjointed we also have yi ¬ xi+1 for i ∈ P. For each
n ∈P we have, due to our choice of δ,∑n

i=1|xi − yi| ¬
∑
J∈G diam J ¬ ι < δ and

∑n
i=1|f(xi)− f(yi)| ¬ ε .

Passing to the limit n→∞ we obtain∑
J∈G diam f [J ] =

∑∞
i=1|f(xi)− f(yi)| ¬ ε .

Clearly diam J ¬ ι for J ∈ G and we get

ψι(Z) ¬ ε .
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Letting first ι ↓ 0 and then ε ↓ 0 we get ψ(Z) = 0. In case inf Z = −∞ we consider an increasing
sequence Zk = Z ∩ {t : t > −k} for k ∈ P and argue that each Zk is a ψ null set so it is
ψ-measurable and we can write

ψ(Z) = ψ(
⋃{Zk : k ∈P}) = lim

k→∞
ψ(Zk) = 0 .

Solution of problem 3.
First we shall prove that for each δ > 0 there exists i0 ∈ P such that for i ∈ P with
i ­ i0 there exists yi ∈ sptφi such that dist(yi, sptφ) ¬ δ. Assume the contrary, i.e., that
ρi = inf{|x − y| : x ∈ sptφ, y ∈ sptφi} > δ for all i ∈ P larger than some i0 = i0(δ) ∈ P
depending on δ. Let f ∈ K(Rn) be such that f(z) = 1 whenever dist(z, sptφ) ¬ δ/2 and
f(z) = 0 if dist(z, sptφ) ­ δ. Such f exists since sptφ is compact and non-empty. Clearly

lim
i→∞

´
f dφi = lim

i→∞

´
sptφi
0 dφi = 0 but

´
f dφ = φ(sptφ) > 0 a contradiction .

Now, we turn to the proof of the main claim. Assume the contrary, i.e., that there exists δ > 0
such that for all i ∈ P there exists xi ∈ sptφi with dist(xi, sptφ) > δ. If i ­ i0(δ), then the
first part of our proof above yields a point yi ∈ sptφi with dist(yi, sptφ) ¬ δ and, since sptφi is
path connected, we may and shall assume that dist(xi, sptφ) ¬ 2δ. Since sptφ is compact we
see that sptφ+B(0, 2δ) is also compact and we may assume (possibly choosing a sub-sequence)
that limi→∞ xi = x exists. Clearly δ ¬ dist(x, sptφ) ¬ 2δ. Let f ∈ K(Rn) be such that f ­ 0,
f(z) = 1 whenever δ/2 ¬ dist(z, sptφ) ¬ 3δ and f(z) = 0 for z ∈ sptφ. We have

´
f dφi ­

´
B(x,δ/2)f dφi ­

´
B(xi,δ/2−|x−xi|)f dφi ­ φi(B(xi, δ/4)) ­ C4

−kδk > 0

whenever i ∈ P is so big that |x − xi| ¬ δ/4. Since
´
f dφ = 0, this contradicts φi → φ as

i→∞.

Solution of problem 4.
Observe that since A may be φ non-measurable the measure φ A might not be Borel regular;
hence, φ A might not be Radon and we cannot directly use any results concerning existence
of densities for Radon measures.
Let K ⊆ Rn be compact and C = A ∩K. We shall show that D(φ C, φ, x) = 1 for φ almost
all x ∈ C. Since Rn is a sum of countably many compact sets, this will suffices to prove the
main claim.
If φ(C) = 0, then there is nothing to prove so assume φ(C) > 0. Let B ⊆ Rn be Borel and
such that C ⊆ B and φ(B) = φ(C). Then B is a φ-hull of C, i.e., φ(T ∩C) = φ(T ∩B) for any
φ-measurable set T . Since balls are φ measurable we get

D(φ C, φ, x) = lim
r↓0

φ(C ∩B(x, r))
φ(B(x, r))

= lim
r↓0

φ(B ∩B(x, r))
φ(B(x, r))

= lim
r↓0

ffl
B(x,r)1B dφ = 1B(x)

for φ almost all x. In particular, D(φ C, φ, x) = 1 for φ almost all x ∈ B but C ⊆ B so
D(φ A, φ, x) = 1 for φ almost all x ∈ C.

Solution of problem 5.
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Note that diam f [S] ¬ C(diamS)γ whenever S ⊆ X. Let A ⊆ X. Employing the fact that
inf C ¬ infD whenever D ⊆ C ⊆ R, for 0 < δ ¬ ∞, setting κ = ( δ

C
)1/γ, we get

2d

α(d)
H d
δ (f [A])

= inf
{∑
P∈F
(diamP )d : F ⊆ 2Y , F countable , f [A] ⊆ ⋃F, diamP ¬ δ for P ∈ F

}

¬ inf
{∑
S∈G
(diam f [S])d : G ⊆ 2X , G countable , A ⊆ ⋃G, diamS ¬ κ for S ∈ G

}

¬ inf
{∑
S∈G

Cd(diamS)dγ : G ⊆ 2X , G countable , A ⊆ ⋃G, diamS ¬ κ for S ∈ G
}

=
Cd2dγ

α(dγ)
H dγ
κ (A) ¬ sup

ι>0

Cd2dγ

α(dγ)
H dγ
ι (A) =

Cd2dγ

α(dγ)
H dγ(A) .

Passing to the limit δ ↓ 0, we get the claim.

If H s(A) = 0 for some 0 ¬ s < ∞, then H s/γ(f [A]) = 0; hence, if dimH (A) < s, then
dimH f [A] ¬ s/γ so dimH f [A] ¬ dimH (A)/γ.


